1

arccos(*x*) = cos^{-1}(*x*)

For example, If the cosine of 60° is 0.5:

cos(60°) = 0.5

Then the arccos of 0.5 is 60°:

arccos(0.5) = cos^{-1}(0.5) = 60°

x | arccos(x) | |
---|---|---|

degrees | radians | |

-1 | 180° | π |

-0.8660254 | 150° | 5π/6 |

-0.7071068 | 135° | 3π/4 |

-0.5 | 120° | 2π/3 |

0 | 90° | π/2 |

0.5 | 60° | π/3 |

0.7071068 | 45° | π/4 |

0.8660254 | 30° | π/6 |

1 | 0° | 0 |

- Cosine calculator
- Sine calculator
- Tangent calculator
- Arcsin calculator
- Arctan calculator
- Trigonometry calculator

1

1
##### MATH CALCULATORS

- Adding fractions calculator
- Addition calculator
- Antilog calculator
- Arccos calculator
- Arcsin calculator
- Arctan calculator
- Convolution calculator
- Cosine calculator
- Dividing fractions calculator
- Division calculator
- Exponential growth calculator
- Exponents calculator
- Fractions calculator
- GCF calculator
- LCM calculator
- Ln calculator
- Log calculator
- Multiplication calculator
- Multiplying fractions calculator
- Percentage calculator
- Percentage change calculator
- Percent error calculator
- Precentage increase calculator
- Pythagorean theorem calculator
- Quadratic equation solver
- Random number generator
- Ratio calculator
- Root calculator
- Scientific notation calculator
- Simplifying fractions calculator
- Sine calculator
- Square root calculator
- Standard deviation calculator
- Subtracting fractions calculator
- Subtraction calculator
- Tangent calculator
- Trigonometry calculator
- Weighted average calculator
- Variance calculator

Users write Now: Santa Klaus • 2 years ago Please explain why the subtotal is needed? Then I should, from a long example with the signs of multiplication and addition, also determine what needs to be added.

More Calculators: limit calculator 1

1